COPD, OSA, AND OHS: WHAT DOES IT ALL MEAN

Wm. Charles Sherrill, Jr. M.D.
Medical Director, Presbyterian Sleep Health
NC Respiratory Care Symposium
September 12, 2012
wcsherrill@novanthealth.org

COPD, OSA, and OHS

- Discuss the normal respiratory changes which occur with sleep
- Discuss the impact of COPD on sleep
- Review the clinical presentation of obstructive sleep apnea
- Discuss the clinical significance of the overlap syndrome (COPD and OSA)
- Discuss obesity hypoventilation syndrome (OHS)
- Sudden death in the hospital
Sleep Stages
- Non REM (NREM)
 ▫ Increase in parasympathetic activity
 ▫ Decrease in sympathetic activity
- Rapid Eye Movement (REM)
 ▫ Tonic phase
 ▪ Further Parasympathetic activity increase
 ▫ Phasic phase
 ▪ Sympathetic surge

Control of breathing
- Metabolic (automatic)
 ▫ paCO2, paO2
- Voluntary (behavioral)
 ▫ Activity of Reticular Activating System (RAS)
 ▫ Brainstem tonic activity
- Both metabolic and voluntary are active in wake
- Sleep onset: voluntary (RAS) activity ceases; control of breathing metabolic only
Normal Sleep
- Minute ventilation decreases
 - Function of reduction in Tidal Volume, less Respiratory Rate
 - PaCO2 increase 2-8 mmHg
 - PaO2 decreases 3-10 mmHg; O2 saturation < 2%
 - Ventilation decrease is greatest in REM sleep
 - Up to 40% reduction in ventilation esp phasic REM
- Both the hypoxic and hypercapnic ventilatory response decrease as sleep deepens.
- Upper airway resistance increases
 - Level of palate and hypopharynx
 - Increase 3-7 x wake
- Metabolism decreases: both VCO2 and VO2

Arousal responses are reduced in sleep
- PCO2 increase of 6-15 mmHg.
- SaO2 < 75% (normals).
- Hypercapnea more potent arousal stimulus

- Reduction in response to laryngeal stimulation
 - Risk of aspiration
COPD, OSA, and OHS

- Cardiovascular response to sleep
 - NREM sleep (parasympathetic)
 - Reduced Heart Rate (5-10%)
 - Reduced Blood Pressure
 - Reduced Cardiac Output
 - Reduced Systemic vascular Resistance
 - Overall reduction in myocardial work
 - REM sleep
 - Variable depending on tonic or phasic REM

- Pulmonary Artery Pressure (PAP)
 - Increase in both NREM and REM

- Coronary Blood Flow
 - NREM: Decrease
 - REM: Increase

- Cerebral Blood Flow
 - No change or slight decrease in sleep
COPD and Sleep

- Chronic Obstructive Airways Disease (COPD)
 - Incidence continues to increase
 - Cigarette smoking remains greatest risk factor
 - Cigarette smoking alone:
 - Sleep onset latency increased
 - Increase stage 1 sleep; decrease in slow wave sleep
 - Withdrawal of nicotine during sleep – sleep fragmentation

 - By 2020, third leading cause of death in the United States
COPD and Sleep

- **Sleep Parameters:**
 - Total sleep time (TST): decreased
 - Sleep onset latency (SOL): increased
 - Increased awakenings / Increased sleep state changes
 - Waking after sleep onset (WASO): increased
 - Slow wave sleep: decreased
 - REM sleep: decreased
 - Sleep efficiency (SE): decreased
 - Increased use of hypnotic medications

- **Physical factors**
 - Cough, shortness of breath, sputum production, pain
 - Nocturnal cough or wheezing: 39% will c/o sleep disturbance
 - Both cough and wheeze: 53% will c/o sleep disturbance
 - Excessive daytime sleepiness: 23% Ezzie, M Sleep Medicine Clinic 2008.

- **Metabolic factors**
 - Hypoxemia, hypercarbia

- **Primary sleep disorders**
 - Obstructive sleep apnea, insomnia

- **Medications**
 - Bronchodilators / steroids: stimulants

- **Psychological factors**
 - Mood disorder: depression and anxiety
COPD and Sleep

- Mechanisms of oxygen desaturation
 - Hypoventilation
 - REM sleep (phasic REM worse)
 - Ventilation Perfusion Mismatch
 - REM sleep: Decrease in FRC (accessory muscles)
 - Oxyhemoglobin desaturation curve
 - Wake SaO2
 - Obstructive Sleep Apnea (Overlap Syndrome)
 - 10-15% OSA in COPD patients
 - “Blue Bloaters”

- Hypoventilation / V/Q mismatch
 - Increase in airway resistance (bronchoconstriction)
 - Ventilatory drive is decreased
 - Basal metabolic rate decreased
 - REM sleep: loss of accessory muscles of respiration
 - Result is a reduction in FRC

- Severe COPD could see
 - 20% decrease in oxygen saturation NREM sleep
 - 40% decrease in REM sleep
COPD and Sleep

- Nocturnal oxygen desaturation
 - Various reports 27% to 70% in patients with COPD
 - Defined SaO2 nadir or % time < 90%.
 - Problem: what is significant and requires treatment
 - NOTT Guidelines / GOLD Initiative / Medicare Guideline
 - Difficult to predict
 - PFT’s: not predictive
 - Awake PaO2: predictive “Blue Bloaters”
 - Resting SaO2 < 93%
 - Awake PaCO2: predictive
 - Resting PaCO2 > 50 mmHg
What is obstructive sleep apnea?

- Repetitive episodes of complete or near complete obstruction of the upper airway resulting in brief arousals from sleep.

- The arousals fragment sleep resulting in a shift from deeper to lighter stages of sleep.

- Drops in oxygen level are also associated with airway obstruction.
COPD, OSA, and OHS

- Pathogenesis
 - Anatomy
 - Upper airway, jaw position, neck circumference
 - Dilator muscle activity
 - Lung volume
 - Decrease in lung volume increase upper airway collapse
 - Ventilatory control stability
 - Sleep state stability
 - Fluid shift in neck

- Risk Factors
 - Male sex
 - Postmenopausal women
 - Age
 - Genetics (familial)
 - Ethnicity
 - Smoking / Alcohol use
 - Sinus disease (?)
 - Body habitus (Apple vs. Pear) Waist to hip ratio
Bed Partners may complain of
- Loud disruptive snoring
- Pauses in breathing at night
- Episodes of snorting, choking, gasping for breath
- Restlessness
- Kicking, flailing arms/legs at night
- Sleep talking

Individuals may complain of
- Nonrestorative or unrefreshing sleep
- Excessive daytime sleepiness
- Restless sleep
- Daytime fatigue or tiredness
- Insomnia
COPD, OSA, and OHS

- Sleep Apnea and Women
 - Fewer complaints of snoring / witnessed apnea
 - More likely to complain of daytime fatigue, tiredness, morning headache
 - Insomnia rather than daytime sleepiness
 - Mood disturbance
 - Symptomatic at lower levels of sleep apnea
 - Higher incidence of hypothyroidism

- Elderly
 - Despite higher prevalence, snoring less prominent.
 - Higher prevalence of central sleep apnea
 - May have different presentation, medical consequences
COPD and OSA

- The Overlap Syndrome (Flenley)
 - Given the relative frequency of the individual conditions would expect the two to occur in the same individual.
 - The prevalence of both conditions continues to increase.
 - No increased association between the two conditions.
 - SHHS: No increased association was found between COPD and OSA. The majority of the COPD was mild.
 - OSA: 22% participants with COPD (FEV1% < 70%).
 - OSA: 29% participants without COPD
COPD and OSA

- Overlap Syndrome
 - Prevalence of COPD in patients with OSA is 10-15%
 - Prevalence of COPD in patients with OSA is similar to its prevalence in the general population around 4%.

COPD and OSA (Overlap Syndrome)

- Clinical significance:
 - Greater degree of nocturnal oxygen desaturation
 - SaO2 nadir, number of desaturations, time spent < 90%
 - Abnormal daytime arterial blood gases
 - Chronic hypercarbia at lower BMI than OSA
 - Chronic hypercarbia at higher FEV1 than COPD.
 - Pulmonary hypertension
 - Overlap syndrome 86%; OSA alone 16%.
COPD and OSA

- Clinical significance
 - Complications such as pulmonary hypertension and right sided heart failure occur earlier.
 - Primarily “blue bloaters”
 - Quality of life measures are reduced

- McNicholas observed that patients admitted to the hospital with COPD were more likely to die at night than with other medical conditions.

- Lavie (2007). The presence of COPD conferred a 7 fold risk of death in OSA patients. (higher than CHF or DM)
- Patients with COPD and overlap syndrome followed for 9 years. All cause mortality
 - Untreated (no CPAP) overlap group: 42.2%
 - COPD only: 24.2%
 - Treated overlap group similar to COPD only
 - Even when adjusted for severity of COPD OSA remained risk factor for death

 Marin, JM et al. A. Am J Respir Crit Care Med 2010
COPD and OSA

- Clinical significance
 - Increased incidence of COPD exacerbations
 - Increase risk of respiratory failure
 - Hospitalization and death
 - Patients admitted with acute exacerbation of COPD in which evaluation does not demonstrate an obvious reason: consider sleep disordered breathing

- Treatment
 - Maximize medical therapy
 - Nocturnal oxygen
 - GOLD guidelines /Medicare guidelines
 - Positive pressure therapy
 - CPAP or Bilevel pressure
 - Marin study which showed reduction in mortality
 - APAP not recommended in “significant” lung disease (Practice parameters AASM) 2008.
COPD and OSA

- COPD: When to evaluate for OSA (sleep study)
 - Obesity: BMI > 30
 - History of snoring, nocturnal pauses
 - Excessive daytime sleepiness
 - Physical exam
 - Neck circumference: M > 17 inches; W >16 inches
 - Crowded upper airway: Mallampati III-IV
 - Use of a screening questionnaire for obstructive sleep apnea
 - STOP / STOP-BANG
 - Berlin Questionnaire
 - Sleep Apnea Clinical Score (SACS)
Obesity Hypoventilation Syndrome

- Daytime hypercapnea and hypoxemia
 - \(\text{PaCO}_2 > 45 \text{ MM HG} \) and \(\text{PaO}_2 < 70 \text{ mm Hg} \)
 - \(\text{BMI} > 30 \text{ kg/m}^2 \)
- Sleep disordered breathing
 - 90% obstructive sleep apnea
 - 10% hypoventilation
- Diagnosis of exclusion
 - R/O pulmonary/neuromuscular / chest wall abnormality
COPD, OSA, and OHS

- Sleep Related Hypoventilation/Hypoxemic Syndromes [Casey, K et al. Chest 2007; 131: 1936-1948]
 - Pulmonary parenchymal or vascular etiology
 - Pulmonary fibrosis
 - Primary pulmonary hypertension
 - Lower airway obstruction
 - Chronic bronchitis/asthma
 - Emphysema
 - Neuromuscular or chest wall abnormality
 - Obesity
 - Kyphoscoliosis/ALS
 - Idiopathic alveolar hypoventilation

- Obesity Hypoventilation Syndrome
 - Prevalence
 - General population: 0.3%.
 - 1:300-600 adults
 - Obstructive sleep apnea: 10-20%
 - Hospitalized patients with BMI > 35: 31%.
 - Prevalence increases with increasing BMI
 - BMI 30-34: 8%
 - BMI 35-39: 18%
 - BMI > 40: 25% [Mokhesi; Chest 2007;132:1322-1336]
Obesity Trends* Among U.S. Adults
(*BMI ≥30, or about 30 lbs. overweight for 5’4’’ person)

Critical points of the NHANES data
- Prevalence of clinically severe obesity is increasing much faster than that of moderate obesity.
- BMI > 40 kg/m² has increased fivefold
 • 1:200 adults to 1:33 adults
- BMI > 50kg/m² has increased tenfold
 • 1:2,000 adults to 1:200 adults

More not less of these individuals will be presenting with acute respiratory failure.
COPD, OSA, and OHS

- Obesity Hypoventilation Syndrome
 - Pathophysiology
 - Respiratory mechanics associated with obesity
 - Reduced total respiratory system compliance
 - Increased lung resistance
 - Respiratory muscle weakness
 - Abnormal central responses to hypercapnea and hypoxemia
 - Sleep disordered breathing
 - Leptin resistance (neurohormonal)
 - Chronic hypercapnea is seen in less than one third of individuals with morbid obesity.

- Obesity Hypoventilation Syndrome
 - Clinical presentation
 - Classic symptoms of obstructive sleep apnea
 - Shortness of breath and periperal edema
 - Cognitive impairment, morning headache

 - Hospital presentation
 - Acute on chronic respiratory failure
COPD, OSA and OHS

- Obesity Hypoventilation Syndrome
 - Arterial Blood Gas:
 - Hypercarbia
 - Hypoxemia
 - Laboratory findings:
 - Elevated serum bicarbonate
 - Reduced resting oxygen saturation
 - Elevated hemoglobin

Measures of Severity of OSA associated with chronic hypercarbia
- AHI
- Mean overnight SpO2
- Minimum SpO2 during sleep
- %TST < 90% during sleep
COPD, OSA, and OHS

Obesity Hypoventilation Syndrome: an Emerging and Unrecognized Risk Factor Among Surgical Patients. Kaw et al. AJRCCM 183,2011; A3147
1784 patients both PSG and non cardiac surgery
471 eligible; 269 (57%) OSA

36/269 (13%) had ABG data. 9/36 (3%) criteria for OHS
14/269 (5%) post operative respiratory failure
44% OHS/OSA
3% OSA

CoMorbidities: should they be considered in the assessment of level of monitoring?

- Higher Risk:
 - Atrial fibrillation*
 - Congestive heart failure*
 - Severe COPD
 - Coronary artery disease*
 - Obesity Hypoventilation Syndrome
 - Pulmonary Hypertension Kaw, R. Respiratory Medicine 2011, 105, 619-624
 - Uncontrolled Hypertension*

- Lower Risk:
 - Mild COPD
 - Hypertension
 - Diabetes Mellitus
 - Cerebrovascular disease*
 - Obesity BMI > 35 kg/m2*
Obesity Hypoventilation Syndrome

 - BMI > 35; ABG: PaCO2 > 43; pH < 7.42.
 - General medical floor: 4332 consecutive admissions. 277 pts (6%) BMI criteria. 150 pts enrolled. 47/150 (31%) ABG
 - Obesity-Hypoventilation vs Obesity alone
 - Increased ICU with mechanical ventilation
 - Increased long term care post discharge.
 - Therapy for hypoventilation at D/C: 6/47 (13%)
 - Mortality at 18 months: 23% (OH) vs 9% (O) Hazard ratio 4.0
 - The difference in survival was evident as early as 3 months post discharge

Should screening for obstructive sleep apnea include screening for OHS?

- Should screening for obstructive sleep apnea include screening for OHS?
- Screening all patients with OSA/+screen and BMI > 35 with awake ABG not practical
- Initial screen:
 - HCO3 > 27 sens 92% spec 50% for hypercapnea
 - Resting wake SpO2 < 93%. (uncommon in simple OSA)
 - Piper, A. Sleep Medicine Review 2011; 15; 79-89.
- If both positive: resting wake ABG.
COPD, OSA, and OHS

- Obesity Hypoventilation Syndrome
 - Treatment (outpatient)
 - Positive Pressure Therapy
 - CPAP successful 80% of cases
 - Bilevel Pressure
 - High CPAP levels required
 - CPAP does not completely correct hypoxemia
 - Acute on chronic respiratory failure
 - OHS with pure hypoventilation; no OSA
 - Oxygen
 - Correct hypoxemia unresponsive to PAP therapy
Obesity Hypoventilation Syndrome

Treatment

- Positive Pressure Therapy
 - Volume-Assured Pressure Support Ventilation (VAPS)
 - Successful in small trial in mild OHS
 - Sture, J.H. Chest 2006; 130(3); 613-621.
 - APAP
 - Not recommended Practice parameters AASM
 - Caution: Protocols using APAP in hospital

- Surgical
 - Tracheostomy
 - Bariatric surgery
 - Little data on long term effectiveness

Treatment (hospital)

- Non invasive positive pressure therapy
 - Bilevel pressure to improve daytime hypercapnea and hypoxemia
 - Requires a 8-10 cm difference in IPAP to EPAP
 - IPAP pressure of 16-20 cm
 - EPAP pressures of 6-10 cm

Mokhlesi, B. et al Proc Am Thorac Soc. 2008. vol 5. 218-
COPD, OSA, and OHS

- **Obesity Hypoventilation Syndrome**
 - Treatment improves:
 - Dyspnea, morning headache, daytime sleepiness, edema
 - Arterial blood gases
 - Pulmonary hypertension and erythrocytosis
 - Improvement directly related to adherence: monitor ABG as well as compliance data
 - Retrospective study 126 patients adherent to PAP
 - 18 month mortality: 3%
 - 2 year mortality: 8%
 - 5 year mortality: 30%

 Budweiser, S. et. Al Jr Int Med; 2007; 261; 375-383

- **Obesity Hypoventilation Syndrome**
 - Response to treatment
 - Nocturnal hypoxemia
 - Positive pressure therapy with/without oxygen
 - Daytime Hyercapnea
 - 75% normalize paCO2
 - 25% will have persistent hypercapnea even on treatment
 - Primary reason for treatment failure is poor adherence to therapy
COPD, OSA, and OHS

- Acute cardiopulmonary failure
 - Associated with OSA
 - Postoperative respiratory failure
 - Associated with OSA and COPD (Overlap Syndrome)
 - Acute exacerbation of COPD
 - Associated with Obesity Hypoventilation Syndrome (OHS)
 - Acute respiratory failure
- Acute Congestive Heart Failure
- Sudden Death

COPD, OSA, and OHS

- Malpractice cases involving Obstructive Sleep Apnea in Hospitalized Patients
 - Intubation complications (20%)
 - Extubation difficulties (10%)
 - Post operative catastrophes (70%)
 - Drug induced respiratory arrest resulting in death/brain damage
 - Patients with OSA with inadequate monitoring

COPD, OSA, and OHS

- Postoperative catastrophes ("Dead in bed")
 - Severe OSA
 - Morbid obesity
 - Isolated ward room
 - No monitoring
 - Receiving narcotics
 - Off O2/PAP

Jonathan I. Berns, M.D.
Conclusions:
- Obstructive sleep apnea can coexist with other respiratory disorders.
- These overlap syndromes result in more severe disease than would be expected.
- Heightened awareness in the hospital provides an opportunity to identify previously undiagnosed patients.
- Appropriate treatment with positive pressure therapy can improve quality of life, reduce exacerbations with hospitalization and improve short term mortality.